
ACL 2020 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

1

0 Introduction 1

Computers are becoming increasingly adept at 2
extracting useful information from raw 3
linguistic data, but they “understand” little about 4
what words actually mean. Vector space models 5
(VSMs) encode words and documents as vectors 6
in higher-dimensional linear spaces, where each 7
dimension corresponds to some feature of the 8
word or text. While probabilistic models treat 9
words as strings whose probability of occurring 10
in the context of other strings can be calculated, 11
VSMs encode relation information between 12
words and documents by decomposing them 13
into a definite number of features. The models 14
have been the subject of much research over the 15
past decade, and here we compare how much 16
information about human attitudes is encoded in 17
these vector space models by evaluating 18
Amazon food reviews with a linear regression 19
model. 20

To approach this question of “how well do VSM 21
models encode sentiment information?”, we 22
created a classification task based on an Amazon 23
reviews dataset. We used a linear regression 24
model to predict Amazon star-based ratings 25
from 1 to 5 based on review texts and to analyze 26
the performance of various vector space models. 27
The models we selected were doc2vec (Mikolov 28
& Le, 2014), fastText (Bojanowski et al, 2016), 29
tf-idf (Jones, 1972), Latent Semantic Analysis 30
(Landauer & Dumais, 1997), and GloVe 31
(Pennington et al, 2014). In choosing these 32
models, we aimed to represent a vast array of 33
common word embedding schemes used in a 34
variety of contexts, and characterize their 35

relative abilities to embed rating information 36
from review texts. 37

We expected the tf-idf embedding to outperform 38
plain LSA in terms of review prediction 39
accuracy. While simple direct vocabulary counts 40
make use of absolute word frequencies in each 41
document, tf-idf controls for frequency of each 42
word across documents, lending greater context 43
to its embeddings. This additional information, 44
encapsulating the rarity of words across the 45
corpus, rather than relative to other words in the 46
document, should allow for more accurate linear 47
predictions of star ratings. Furthermore, we 48
expected that embeddings which capture 49
information on context and semantic relations, 50
such as fastText and doc2vec, would outperform 51
models that treat words as atomic or independent 52
features, such as GloVe and LSA. 53

1 Related Work 54

The past decade has witnessed numerous 55
increasingly complex and accurate language 56
models, as well as a blurring of the distinction 57
between vector space and probabilistic models. 58
For example, BERT-based (Devlin et al. 2019) 59
models fine-tune their word embeddings based 60
on the downstream task for which they are being 61
trained, and Facebook’s LASER (Facebook 62
2019) generates sentence embeddings (as 63
opposed to word or document embeddings) that 64
are so comprehensive that they can identify the 65
polarity relationship (related vs. opposite) 66
between sentences in different languages. 67
However, these new hybrid models are trained 68
with some downstream task in mind, whereas 69
simpler models like doc2vec (Quoc and 70
Mikolov 2014) and fastText (Bojanowski et al. 71
2017) offer regular means of embedding 72
documents in vector spaces. Turney and Pantel 73

“Subtle notes of [-124957e7, 0.127489, 123483e7]”: Non-Binary
Sentiment Classification of Amazon Fine Food Reviews with Four

Vector Space Models

Bradley Goldsmith, Garrett Johnson, Zipporah Klain, Nick Ornstein

ACL 2020 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

2

(Turney and Pantel 2010) have proposed 74
diagnostic tests for ascertaining which aspects of 75
semantic meaning are captured in vector space 76
models, but such diagnostics concern 77
themselves with more complex aspects of 78
semantic theory like semantic role labeling and 79
relational classification. Here, we evaluate 80
VSMs based on how much information about 81
the sentiment of Amazon reviews is directly 82
encoded in the model itself. 83

2 Models and Methods 84

2.1 Doc2vec 85

Doc2vec, or Paragraph Vector, was presented in 86
Mikilov and Le (2014). Starting with a 87
word2vec representation of a given document, 88
with trained word vectors, doc2vec adds another 89
vector, the paragraph ID. This vector remembers 90
the “topic” of the paragraph or document and is 91
trained alongside the word vectors in the training 92
process. There are two versions of doc2vec: the 93
Distributed Memory version of Paragraph 94
Vector (PV-DM) and the Distributed Bag of 95
Words version of Paragraph Vector (PV-96
DBOW). PV-DM is an extension of the 97
word2vec continuous bag of words (CBOW) 98
model, using all the words plus the paragraph 99
vector to predict a word based on its context 100
(surrounding words); PV-DBOW is 101
correspondingly similar to word2vec’s skip 102
gram, using only the paragraph vector to predict 103
a target word. While PV-DBOW is faster, since 104
there is no need to save the word vectors, PV-105
DM is more accurate, so we chose to use it here 106
in our doc2vec model. 107
In this experiment, we treated each Amazon 108
review as a paragraph, or document, with a 109
paragraph vector created to represent the overall 110
“topic” of each review. More specifically, to 111
create the doc2vec embedding, we tagged each 112
review with its star rating, built the vocabulary 113
(for the whole corpus), trained the model (both 114
paragraph and word vectors) by predicting 115
holdout words, inferred a new paragraph vector 116
for each Amazon review from the words 117
composing it, and then fit a linear regression 118
model to these vectors, predicted star ratings for 119
the test set, and evaluated accuracy and error, as 120
described below. 121

2.2 FastText 122

The fastText linear classifier was developed by 123
Facebook AI researchers in 2016 by P. 124
Bojanowski, E. Grave, A. Joulin, and T. 125
Mikolov. fastText has several advantages as a 126
classification model: it is fast, has performance 127
comparable to neural network alternatives, and 128
can compute vectors for words outside of its 129
training vocabulary. The key to these properties 130
is the use of subword information in word 131
embeddings. fastText models learn word vectors 132
as skipgrams, where each word is the sum of 133
smaller, sub-word vectors called character n-134
grams. For example, the word “hello” would be 135
marked with head and tail characters 136
(“<hello>”) and then processed as a series of 137
continues character n-grams of size 3 (“<he” + 138
“hel” + “ell” + “llo” + “lo>”). In turn, document 139
vectors (in our case, each review) are the sum of 140
their word vectors. This approach allows 141
fastText to capture morphological information 142
and generalize subtle semantic connections. 143
Because of these unique characteristics of the 144
fastText embeddings, we believe that a classifier 145
trained with fastText will outperform the other 146
embeddings under examination. 147
 The fastText API has been developed 148
with the intention of keeping code lightweight 149
and uncluttered. As a consequence, the available 150
functions in the fastText python module and the 151
nature of how embeddings are trained presented 152
some notable hurdles when we conducted 153
analysis. Namely, fastText produces models by 154
taking in plain text files, training word vectors, 155
and returning a fastText model object. This 156
meant that both train and test data preprocessing 157
had to be unique for creating fastText 158
embeddings (compared with the 159

ACL 2020 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

3

other embeddings). Further, the model object is 160
a multinomial logistic regression classifier with 161
an associated matrix representing document 162
vectors. 163
It was neither simple nor clear from the 164
documentation how to extract the word vectors 165
from the models. Because of the difficulty of the 166
matter and the principle that we should not 167
deviate from the intended regression type and 168
unnecessarily hinder the performance of 169
fastText, we decided to compare the 170
performance of the fastText logistic regression 171
with our other embeddings’ performances using 172
a linear regression classifier. 173
After the decision to use fastText’s built-in 174
classifier architecture was made, there still 175
remained hurdles to obtaining statistical 176
descriptions of model performance. fastText 177
model objects only have an internal metric 178
function for calculating precision and recall at k. 179
In order to obtain accuracy and root mean square 180
error for fastText models, we had to create our 181
own scripts for extracting the word vectors, re-182
processing the testing data, and calculating the 183
accuracy and root mean square error based on 184
the lists of model predictions and correct labels. 185

2.3 GloVe 186

The GloVe [glʌv] model was developed at 187
Stanford in 2014 by Jeffrey Pennington, Richard 188
Socher, and Christpher D. Manning (Pennington 189
et al. 2014). It is a global log-bilinear regression 190
model for unsupervised word-learning, hence 191
the name Global Vectors. It consists of several 192
sets of word vectors that have been pre-trained 193

on huge corpora in an attempt to create 194
generalizable and adaptable vector space 195
models. GloVe differentiates itself from other 196
models by leveraging matrix factorization (like 197
Singular Value Decomposition, used in LSA) 198
and moving window-based methods (like c-bow 199
and skip-gram) together in order to encode both 200
global and local word occurrence statistics, and 201
outperforms c-bow and skip-gram models on 202
several evaluations. The authors provides ten 203
different models on the project website, 204
pretrained on four different corpora: 205

Gigaword is a static news repository and 206
Wikipedia is the online encyclopedia, so the 207
training data likely does not reflect the usage 208
patterns in Amazon food reviews. The Common 209
Crawl models are trained on data from all over 210
the internet, so it is possible that these models 211
better reflect Amazon review usage patterns, but 212
not perfectly. The Twitter corpus is most similar 213
to the Amazon review corpus in that both 214
corpora consist primarily (or exclusively) of 215
short observations that reflect the attitudes of a 216
wide variety of people. Because the GloVe 217
models are trained on data that contains more 218
attitudes and aesthetic judgements than the other 219
training corpora, it is anticipated that it will 220
outperform models trained on Gigaword + 221
Wikipedia and Common Crawl. 222

Document vectors are generated from the GloVe 223
models by treating each review as a bag of words 224

Table 1: GloVe Model Parameters

Gigaword + Wikipedia
2014

Common
Crawl

Common
Crawl

Twitter

Corpus size 6B tokens 42B tokens 840B tokens 2B tweets

Vocabulary
size

400,000 1.9M 2.2M 1.2M

Dimensions 50d, 100d, 200d, 300d 300d 300d 25d, 50d, 100d,
200d

ACL 2020 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

4

and summing together the GloVe vectors for all 225
of the words. 226

2.4 LSA 227

In 1997, Landauer and Dumais introduced 228
‘Latent Semantic Analysis’ as a “high 229
dimensional associative model” for language 230
learning. LSA uses the Singular Value 231
Decomposition to reduce the dimensionality of 232
document-term matrices and has proven a 233
highly effective method of topic modeling. We 234
generate two sets of LSA vectors for our study: 235
one set consists of raw term count matrices 236
generated using scikit-learn’s 237
CountVectorizer() module and the other of tf-238
idf matrices generated using the 239
tfIdfVectorizer() module. tf-idf divides the raw 240
term counts by the inverse of the number of 241
documents in which the term appears, and in 242
doing so assigns higher weights to words that 243
appear less frequently on the assumption that 244
they are more useful for differentiating 245
documents from one another. 246

3 Experiments 247

For our dataset, we used the Amazon Fine Food 248
Reviews dataset from Kaggle.com, which 249
consists of about 500,000 food reviews from 250
Amazon, spanning more than 10 years up to 251
October 2012. From this dataset, we used the 252
text of each review and the corresponding 253
rating given out of five stars, training our 254
models to predict this rating based on the text. 255
We cleaned and lemmatized this data and 256
created a standardized train-test split of 257
454,763 reviews in the training set and 113,691 258
in the test set. 259

The dataset was cleaned by removing all 260
punctuation, converting the string to lowercase, 261
and lemmatizing the tokens with the 262
Lemmatizer module from the spaCy library. 263

To be able to compare our different 264
embeddings effectively in our initial analysis, 265
we standardized some variables in creating 266
these embeddings (except for GloVe, which 267
came pre-trained). We held our vector lengths 268
to 50, trained for 10 epochs, and limited our 269
vocabulary to including only words that 270
appeared around 6000 times in the dataset, 271
which resulted in a vocabulary of size 272
approximately 600 (details varied slightly by 273
model). 274

For analyzing the performance of each of our 275
models (except fastText, which has a built-in 276
classifier), we trained linear regression models 277
from scikit-learn on the training set of the 278
embeddings and then predicted the review 279
ratings in the test set based on their 280
embeddings. We evaluated these review ratings 281
by calculating their root mean squared error 282
with respect to their actual ratings and then also 283
by rounding each predicted review to its nearest 284
integer between one and five (to get a valid star 285
rating) and computing accuracy. 286

4 Results 287

At vector size 50 and training for 10 epochs 288
(when applicable), we obtained the following 289
results (Table 2). As expected, fastText 290
performed the best when comparing both 291
accuracy (from our predicted integer star 292
reviews) and root mean squared error (from our 293
raw predicted ratings), though results were 294

Table 2: Model Metrics

Model

Label
Frequencies

LSA
(Counts)

LSA
(tf-idf)

Doc2Vec fastText GloVe
(Twitter)

GloVe
(Gigaword)

Accuracy 0.423 0.309 0.375 0.361 0.594 0.288 0.305

RMSE 1.883 1.182 1.120 1.126 1.318 1.189 1.159

Recall 0.423 0.311 0.400 0.361 --- 0.288 0.305

Precision 0.456 0.616 0.686 0.646 --- 0.607 0.614

F1 0.439 0.413 0.505 0.397 --- 0.309 0.281

ACL 2020 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

5

otherwise somewhat comparable across the 295
board. It is worth noting that fastText’s results 296
cannot really be compared to the other 297
embeddings’ since it used its own built-in 298
logistic regression classifier, rather than the 299
standardized scikit-learn linear regression 300
model we used for the rest. 301

The Label Frequencies column of Table 2 302
represents the results obtained from randomly 303
predicting ratings based solely on the raw 304
distribution of ratings in the training data set, 305
serving as a baseline against which to compare 306
our methods. Unfortunately, we found that the 307
random predictions had higher accuracy than 308
any of our models, other than fastText, 309
although their root mean squared error was also 310
significantly higher. We tentatively attribute 311
this to the overrepresentation of five-star 312
reviews in the underlying dataset. 313

5 Additional Analysis 314

In the course of conducting our present 315
investigation into the relative effectiveness of 316
different word embedding techniques, a number 317
of relevant follow-up experiments arose. These 318
experiments are intended to develop our 319
understanding of the different word embeddings 320
by observing the changes that occur when 321
certain hyper-parameters are varied, data is 322
preprocessed differently, or when the dataset is 323
restricted to have equal numbers of each star 324
rating (i.e. 29769 randomly selected one-star 325
reviews, 29769 randomly selected two-star 326
reviews, etc.). 327
 328
5.1 Vector Dimension Analysis 329
The first additional analysis we conducted was 330
to examine the effect of varying the word and 331
document vector dimensions for each 332
embedding scheme while fixing the other 333
hyperparameters like context, epochs, and 334
learning rate. The context size and learning rates 335
were fixed at the defaults set by the developers 336
for the relevant embedding schemes and the 337
number of epochs was set at 10. We then 338
examined the change in the accuracy of the 339
models as the vector dimension varied, from 340
which we could determine the optimal 341
dimension size for each embedding. We 342
expected that increasing the dimensions would 343
only improve the accuracy of models, but there 344
would be diminishing returns after a certain 345

point, when performance either plateaus or 346
begins to decline. The rationale is that after a 347
certain point, encoding more, extremely subtle 348
information on word relationships should not 349
significantly improve model performance on the 350
sentiment prediction task. Our results are 351
graphed in the figures below. 352
 353
The above charts, “Accuracy vs. Vector Size” 354

and “Root Mean Square Error vs. Vector Size,” 355
display the results of this further experiment. 356
Results indicate that increasing vector 357
dimensionality does improve model 358
performance, though subsequent improvement 359
becomes less substantial after at around 100 360
dimensions. fastText and doc2vec initially 361
showed little variation as compared with LSA, 362
tf-idf, and GloVe, but this was likely because the 363
minimum dimension being tested (25) captured 364
most of the variance in those embeddings. 365
Accordingly, we have done additional analysis 366
on doc2vec and found that indeed it does show 367
substantially worse performance below 25 368
dimensions. We can reasonably expect the same 369
to be true of fastText. 370
 371
5.2 Training Duration Analysis 372
The second additional analysis we conducted is 373
similar to the above study on the effects of 374
dimensionality. Here, we varied the training 375
epochs for doc2vec and fastText. Once again, 376
the context size and learning rates were fixed at 377
the defaults set by the developers for the relevant 378
embedding schemes and now the word vector 379

ACL 2020 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

6

dimensionality was fixed at 50. We examined 380
the change in the accuracy of the various models 381
as they were trained on more epochs, creating a 382
graph of the models’ performance over the 383
duration of training. The resulting graph is 384
shown below. We predicted that, similar to 385
above, there will be diminishing returns as the 386
number of epochs increases. There is also a 387
danger of overfitting the model to the training 388
data, which will be particularly problematic for 389
other tasks that would require models to be 390
highly generalizable. 391
The above charts, “Accuracy vs. Epoch 392
Number” and “Root Mean Square Error vs. 393

Epoch Number,” display the results of this 394
further experiment, which was only applicable 395
to doc2vec and fastText (as other models were 396
either pre-trained or were trained as statistic 397
models rather than learning models). Results 398
indicate that increasing epoch size did not have 399
a significant effect on the performance of our 400
classifiers. This makes sense, because the 401
imbalance in review classes (a majority of 402
ratings were 5, and a larger majority were just 5 403
or 1) and the relatively small size of our 404
vocabulary (just over 600 words) mean that 405
there are not actually many associations to be 406
learned. Performance then is mostly dependent 407
on how the embeddings are made, rather than 408
how long they are trained. 409

 410
5.3 GloVe corpus size analysis 411
There are two GloVe models trained on 412
Common Crawl corpora, but one corpus 413
contains 42 billion tokens while the other 414
contains 840 billion. The increase in 415
performance is negligible (< 0.01) 416
improvements in recall, precision, and RMSE. 417
These results indicate that 42 billion tokens is a 418

Table 3: GloVe Metrics

Common
Crawl 42B
(300d)

Common Crawl
840B (300d)

Recall 0.357 0.358

Precision 0.644 0.649

RMSE 1.095 1.091

Table 4: Filtered/Even Data

Model Label
Frequencies

LSA
(Counts)

LSA (tf-
idf)

Doc2Vec GloVe
(Twitter)

GloVe
(Gigaword)

Accuracy 0.197 0.244 0.280 0.242 0.233 0.229

RMSE 1.885 1.277 1.202 1.295 1.292 1.295

Recall 0.197 0.244 0.280 0.242 0.233 0.229

Precision 0.158 0.343 0.418 0.334 0.316 0.325

F1 0.175 0.285 0.335 0.184 0.268 0.268

ACL 2020 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

7

representative sample size of the English 419
language and increasing the size of the training 420
corpus beyond this point does not meaningfully 421
improve accuracy. 422
 423
5.4 Filtered Data 424
In our original Results section, we were 425
disheartened to find the random classifier 426
outperforming us significantly on accuracy, if 427
not RMSE. We attributed this largely to the 428
overrepresentation of five-star reviews in the 429
dataset, meaning that a guess of five stars would 430
be likely to be correct, regardless of the review’s 431
text. To account for this, we filtered the dataset 432
down to a random selection of 29769 reviews of 433
each star rating (i.e., 29769 randomly selected 434
one-star reviews, 29769 randomly selected two-435
star reviews, and so on) and reran our analyses. 436
In Table 4, it is clear that this filtering produced 437
more expected results from the random classifier 438
(Label Frequencies), with an accuracy of 0.197, 439
or almost 1/5th, the expected value at chance. 440
While our embeddings’ accuracies also shrunk 441
across the board, they now outperformed the 442
random classifier in accuracy and continued to 443
outperform it in root mean squared error to a 444
similar degree. 445

6 Discussion 446

The use of a linear regression model to build 447
predictions for each embedded review is unusual 448
in the context of how embeddings are usually 449
evaluated and compared (Bakarov, 2018). This 450
method of testing would fall under Bakarov’s 451
category of ‘Extrinsic Review,’ and more 452
specifically, ‘Sentiment Analysis.’ In using a 453
linear regression model, which is highly 454
simplistic in tuning weightings for each 455
dimension to project a vector onto a 1-D ratings 456
space, we hoped to strip away more complicated 457
classifiers and examine the work done by each 458
embedding. 459
Initial results proved somewhat surprising. Our 460
initial hypothesis regarding the use of tf-idf 461
versus straight counts feeding into the LSA 462
proved correct, in that in all experiments, tf-idf 463
outperformed the straight counts. The top 464
performer on the initial experiment in terms of 465
accuracy was fastText, by a wide margin (see 466
Table 2, initial results). However, its RMSE was 467
significantly higher than the Counts and tf-idf 468
versions of LSA. The frequency-based random 469

predictor exhibited similar behavior, whereby its 470
accuracy was much surprisingly much higher 471
than any of the trained models, but its RMSE 472
was quite large. This suggests that fastText 473
learned that 5-stars was by far the most popular 474
rating, rather than encoding the meaning in each 475
document. 476
The first two follow-up experiments, 477
dimensional analysis and epoch number, 478
confirm that classification accuracies for these 479
embeddings can be increased via careful 480
hyperparameter tuning. It also implies that such 481
linear models will not necessarily be improved 482
by increasing overhead so as to include more 483
information during learning. In other words, 484
there is a sweet spot for each training scenario 485
that allows each model to be optimally accurate 486
while remaining relatively inexpensive to train. 487
It also indicates that semantic information is not 488
uniformly distributed in a text; i.e. our models 489
can be selective with what aspects of the training 490
data are assigned high significance and actually 491
perform better, and not worse, than if they had 492
considered more information. Optimal 493
performance for a low price is one of the benefits 494
of using linear models, and we are pleased with 495
the results of these two additional experiments. 496
In the fourth follow-up experiment, we 497
controlled for the disproportionate number of 498
fives in the dataset by using the same number of 499
reviews from each of the five classes. This 500
normalization negatively affected the prediction 501
accuracy of the linear regression model. From 502
this we can conclude that our models were 503
achieving high accuracy just by guessing five 504
most of the time, exploiting the preponderance 505
of fivess in the data. Once the proportions of 506
ratings in the data was controlled for by 507
including even amounts of each rating, the 508
random predictor accuracy dropped to chance. 509
The tf-idf encoding proved most successful in 510
this context, outperforming GloVe and doc2vec. 511
This result can possibly be attributed to the clean 512
simplicity of term-document matrices. The bag-513
of-words approach allows for the selective 514
weighting of keywords that captures the most 515
salient information about the sentiment of each 516
review. 517
Despite being trained on gigantic corpora, the 518
GloVe models performed worse than the LSA 519
models, but the raw count LSA model only 520
barely outperformed Twitter GloVe (especially 521

ACL 2020 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

8

at d = 100) so perhaps if we generated document 522
embeddings using (means or some other method 523
besides addition), the roles would be reversed. 524

7 Conclusion 525

In conclusion, fastText’s built-in classifier 526
proved more accurate than the other vector space 527
models with the linear classifier, although its 528
root mean square error was larger than other 529
models, like the Counts and tf-idf 530
implementations of LSA. Accuracy increases as 531
the dimensionality of the vectors increases, but 532
it does not increase linearly, leveling off toward 533
300 dimensions. For fastText and doc2vec, the 534
number of training epochs has minimal bearing 535
on each model’s performance. Ultimately, we 536
gained a variety of helpful insights into tuning 537
the hyperparameters of vector space models like 538
dimensionality and training epochs in order to 539
optimize their performance on classification 540
tasks. 541
For the controlled ratings frequency experiment 542
(Table 4), the top accuracies of our models, 543
while decisively above chance, were still not 544
high, peaking at around 28% accuracy, and 545
missing the correct rating by 1.2 stars on average 546
at best. While this poor performance could be 547
due to the highly limited vocabulary size 548
(necessary for model implementation due to lack 549
of GPU’s available to run our code), this result 550
likely shows that review information was not 551
approximated well by a linear model. Future 552
work would employ feed-forward neural 553
networks with non-linear transfer functions as a 554
classifier in order to evaluate the role non-555
linearities in these vector space models play in 556
the encoding of sentiment in document 557
embeddings. 558
 559

References 560

Bakarov, Amir. 2018. “A Survey of Word 561
Embeddings Evaluation Methods.” 562
ArXiv:1801.09536 [Cs], January. 563
http://arxiv.org/abs/1801.09536. 564

Bojanowski, Piotr, Edouard Grave, Armand 565
Joulin, and Tomas Mikolov. 2017. 566
“Enriching Word Vectors with Subword 567
Information.” ArXiv:1607.04606 [Cs], 568
June. http://arxiv.org/abs/1607.04606. 569

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, 570
and Kristina Toutanova. 2019. “BERT: 571
Pre-Training of Deep Bidirectional 572
Transformers for Language 573
Understanding.” ArXiv:1810.04805 [Cs], 574
May. http://arxiv.org/abs/1810.04805. 575

Ettinger, Allyson, Ahmed Elgohary, and Philip 576
Resnik. 2016. “Probing for Semantic 577
Evidence of Composition by Means of 578
Simple Classification Tasks.” In 579
Proceedings of the 1st Workshop on 580
Evaluating Vector-581
Space Representations for NLP, 582
134–39. Berlin, Germany: Association for 583
Computational Linguistics. 584
https://doi.org/10.18653/v1/W16-2524. 585

Faruqui, Manaal, Yulia Tsvetkov, Pushpendre 586
Rastogi, and Chris Dyer. 2016. “Problems 587
With Evaluation of Word Embeddings 588
Using Word Similarity Tasks.” 589
ArXiv:1605.02276 [Cs], June. 590
http://arxiv.org/abs/1605.02276. 591

Gladkova, Anna, Aleksandr Drozd, and Satoshi 592
Matsuoka. 2016. “Analogy-Based 593
Detection of Morphological and Semantic 594
Relations with Word Embeddings: What 595
Works and What Doesn’t.” In 596
Proceedings of the NAACL Student 597
Research Workshop, 8–15. San Diego, 598
California: Association for Computational 599
Linguistics. 600
https://doi.org/10.18653/v1/N16-2002. 601

“LASER Natural Language Processing 602
Toolkit.” 2019. Facebook Engineering 603
(blog). January 22, 2019. 604
https://engineering.fb.com/2019/01/22/ai-605
research/laser-multilingual-sentence-606
embeddings/. 607

Le, Quoc V., and Tomas Mikolov. 2014. 608
“Distributed Representations of Sentences 609
and Documents.” ArXiv:1405.4053 [Cs], 610
May.Proceedings of the 31st International 611
Conference on Machine Learning, in 612
PMLR 32(2):1188-1196. 613
http://arxiv.org/abs/1405.4053. 614

Maas, Andrew L, Raymond E Daly, Peter T 615
Pham, Dan Huang, Andrew Y Ng, and 616
Christopher Potts. n.d. “Learning Word 617
Vectors for Sentiment Analysis,” 9. 618

ACL 2020 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

9

Pennington, J., Socher, R., & Manning, C.D. 619

(2014). Glove: Global Vectors for Word 620
Representation. EMNLP. 621

Sparck Jones, Karen. 1972. “A Statistical 622
Interpretation of Term Specificity and Its 623
Application in Retrieval.” Journal of 624
Documentation 28 (1): 11–21. 625
https://doi.org/10.1108/eb026526. 626

Schnabel, Tobias, Igor Labutov, David Mimno, 627
and Thorsten Joachims. 2015. “Evaluation 628
Methods for Unsupervised Word 629
Embeddings.” In Proceedings of the 2015 630
Conference on Empirical Methods in 631
Natural Language Processing, 298–307. 632
Lisbon, Portugal: Association for 633
Computational Linguistics. 634
https://doi.org/10.18653/v1/D15-1036. 635

Stanford Network Analysis Project. (2017, 636
May 1). Amazon Fine Food Reviews. 637
Kaggle. 638
https://www.kaggle.com/snap/amazon-639
fine-food-reviews. 640

Turney, Peter D., and Patrick Pantel. 2010. 641
“From Frequency to Meaning: Vector 642
Space Models of Semantics.” Journal of 643
Artificial Intelligence Research 37 644
(February): 141–88. 645
https://doi.org/10.1613/jair.2934. 646

Ye, Zhe, Fang Li, and Timothy Baldwin. n.d. 647
“Encoding Sentiment Information into 648
Word Vectors for Sentiment Analysis,” 649
11. 650

