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0    Introduction 1 

Computers are becoming increasingly adept at 2 
extracting useful information from raw 3 
linguistic data, but they “understand” little about 4 
what words actually mean. Vector space models 5 
(VSMs) encode words and documents as vectors 6 
in higher-dimensional linear spaces, where each 7 
dimension corresponds to some feature of the 8 
word or text. While probabilistic models treat 9 
words as strings whose probability of occurring 10 
in the context of other strings can be calculated, 11 
VSMs encode relation information between 12 
words and documents by decomposing them 13 
into a definite number of features. The models 14 
have been the subject of much research over the 15 
past decade, and here we compare how much 16 
information about human attitudes is encoded in 17 
these vector space models by evaluating 18 
Amazon food reviews with a linear regression 19 
model. 20 

To approach this question of “how well do VSM 21 
models encode sentiment information?”, we 22 
created a classification task based on an Amazon 23 
reviews dataset. We used a linear regression 24 
model to predict Amazon star-based ratings 25 
from 1 to 5 based on review texts and to analyze 26 
the performance of various vector space models. 27 
The models we selected were doc2vec (Mikolov 28 
& Le, 2014), fastText (Bojanowski et al, 2016), 29 
tf-idf (Jones, 1972), Latent Semantic Analysis 30 
(Landauer & Dumais, 1997), and GloVe 31 
(Pennington et al, 2014). In choosing these 32 
models, we aimed to represent a vast array of 33 
common word embedding schemes used in a 34 
variety of contexts, and characterize their 35 

relative abilities to embed rating information 36 
from review texts. 37 

We expected the tf-idf embedding to outperform 38 
plain LSA in terms of review prediction 39 
accuracy. While simple direct vocabulary counts 40 
make use of absolute word frequencies in each 41 
document, tf-idf controls for frequency of each 42 
word across documents, lending greater context 43 
to its embeddings. This additional information, 44 
encapsulating the rarity of words across the 45 
corpus, rather than relative to other words in the 46 
document, should allow for more accurate linear 47 
predictions of star ratings. Furthermore, we 48 
expected that embeddings which capture 49 
information on context and semantic relations, 50 
such as fastText and doc2vec, would outperform 51 
models that treat words as atomic or independent 52 
features, such as GloVe and LSA. 53 

1 Related Work 54 

The past decade has witnessed numerous 55 
increasingly complex and accurate language 56 
models, as well as a blurring of the distinction 57 
between vector space and probabilistic models. 58 
For example, BERT-based (Devlin et al. 2019) 59 
models fine-tune their word embeddings based 60 
on the downstream task for which they are being 61 
trained, and Facebook’s LASER (Facebook 62 
2019) generates sentence embeddings (as 63 
opposed to word or document embeddings) that 64 
are so comprehensive that they can identify the 65 
polarity relationship (related vs. opposite) 66 
between sentences in different languages. 67 
However, these new hybrid models are trained 68 
with some downstream task in mind, whereas 69 
simpler models like doc2vec (Quoc and 70 
Mikolov 2014) and fastText (Bojanowski et al. 71 
2017) offer regular means of embedding 72 
documents in vector spaces. Turney and Pantel 73 
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(Turney and Pantel 2010) have proposed 74 
diagnostic tests for ascertaining which aspects of 75 
semantic meaning are captured in vector space 76 
models, but such diagnostics concern 77 
themselves with more complex aspects of 78 
semantic theory like semantic role labeling and 79 
relational classification. Here, we evaluate 80 
VSMs based on how much information about 81 
the sentiment of Amazon reviews is directly 82 
encoded in the model itself. 83 

2 Models and Methods 84 

2.1 Doc2vec 85 

Doc2vec, or Paragraph Vector, was presented in 86 
Mikilov and Le (2014). Starting with a 87 
word2vec representation of a given document, 88 
with trained word vectors, doc2vec adds another 89 
vector, the paragraph ID. This vector remembers 90 
the “topic” of the paragraph or document and is 91 
trained alongside the word vectors in the training 92 
process. There are two versions of doc2vec: the 93 
Distributed Memory version of Paragraph 94 
Vector (PV-DM) and the Distributed Bag of 95 
Words version of Paragraph Vector (PV-96 
DBOW). PV-DM is an extension of the 97 
word2vec continuous bag of words (CBOW) 98 
model, using all the words plus the paragraph 99 
vector to predict a word based on its context 100 
(surrounding words); PV-DBOW is 101 
correspondingly similar to word2vec’s skip 102 
gram, using only the paragraph vector to predict 103 
a target word. While PV-DBOW is faster, since 104 
there is no need to save the word vectors, PV-105 
DM is more accurate, so we chose to use it here 106 
in our doc2vec model. 107 
In this experiment, we treated each Amazon 108 
review as a paragraph, or document, with a 109 
paragraph vector created to represent the overall 110 
“topic” of each review. More specifically, to 111 
create the doc2vec embedding, we tagged each 112 
review with its star rating, built the vocabulary 113 
(for the whole corpus), trained the model (both 114 
paragraph and word vectors) by predicting 115 
holdout words, inferred a new paragraph vector 116 
for each Amazon review from the words 117 
composing it, and then fit a linear regression 118 
model to these vectors, predicted star ratings for 119 
the test set, and evaluated accuracy and error, as 120 
described below. 121 

2.2 FastText 122 

The fastText linear classifier was developed by 123 
Facebook AI researchers in 2016 by P. 124 
Bojanowski, E. Grave, A. Joulin, and T. 125 
Mikolov. fastText has several advantages as a 126 
classification model: it is fast, has performance 127 
comparable to neural network alternatives, and 128 
can compute vectors for words outside of its 129 
training vocabulary. The key to these properties 130 
is the use of subword information in word 131 
embeddings. fastText models learn word vectors 132 
as skipgrams, where each word is  the sum of 133 
smaller, sub-word vectors called character n-134 
grams. For example, the word “hello” would be 135 
marked with head and tail characters 136 
(“<hello>”) and then processed as a series of 137 
continues character n-grams of size 3 (“<he” + 138 
“hel” + “ell” + “llo” + “lo>”). In turn, document 139 
vectors (in our case, each review) are the sum of 140 
their word vectors. This approach allows 141 
fastText to capture morphological information 142 
and generalize subtle semantic connections. 143 
Because of these unique characteristics of the 144 
fastText embeddings, we believe that a classifier 145 
trained with fastText will outperform the other 146 
embeddings under examination. 147 
 The fastText API has been developed 148 
with the intention of keeping code lightweight 149 
and uncluttered. As a consequence, the available 150 
functions in the fastText python module and the 151 
nature of how embeddings are trained presented 152 
some notable hurdles when we conducted 153 
analysis. Namely, fastText produces models by 154 
taking in plain text files, training word vectors, 155 
and returning a fastText model object. This 156 
meant that both train and test data preprocessing 157 
had to be unique for creating fastText 158 
embeddings (compared with the  159 
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other embeddings). Further, the model object is 160 
a multinomial logistic regression classifier with 161 
an associated matrix representing document 162 
vectors.  163 
It was neither simple nor clear from the 164 
documentation how to extract the word vectors 165 
from the models. Because of the difficulty of the 166 
matter and the principle that we should not 167 
deviate from the intended regression type and 168 
unnecessarily hinder the performance of 169 
fastText, we decided to compare the 170 
performance of the fastText logistic regression 171 
with our other embeddings’ performances using 172 
a linear regression classifier.  173 
After the decision to use fastText’s built-in 174 
classifier architecture was made, there still 175 
remained hurdles to obtaining statistical 176 
descriptions of model performance. fastText 177 
model objects only have an internal metric 178 
function for calculating precision and recall at k. 179 
In order to obtain accuracy and root mean square 180 
error for fastText models, we had to create our 181 
own scripts for extracting the word vectors, re-182 
processing the testing data, and calculating the 183 
accuracy and root mean square error based on 184 
the lists of model predictions and correct labels. 185 

2.3 GloVe 186 

The GloVe [glʌv] model was developed at 187 
Stanford in 2014 by Jeffrey Pennington, Richard 188 
Socher, and Christpher D. Manning (Pennington 189 
et al. 2014). It is a global log-bilinear regression 190 
model for unsupervised word-learning, hence 191 
the name Global Vectors. It consists of several 192 
sets of word vectors that have been pre-trained 193 

on huge corpora in an attempt to create 194 
generalizable and adaptable vector space 195 
models. GloVe differentiates itself from other 196 
models by leveraging matrix factorization (like 197 
Singular Value Decomposition, used in LSA) 198 
and moving window-based methods (like c-bow 199 
and skip-gram) together in order to encode both 200 
global and local word occurrence statistics, and 201 
outperforms c-bow and skip-gram models on 202 
several evaluations. The authors provides ten 203 
different models on the project website, 204 
pretrained on four different corpora: 205 

Gigaword is a static news repository and 206 
Wikipedia is the online encyclopedia, so the 207 
training data likely does not reflect the usage 208 
patterns in Amazon food reviews. The Common 209 
Crawl models are trained on data from all over 210 
the internet, so it is possible that these models 211 
better reflect Amazon review usage patterns, but 212 
not perfectly. The Twitter corpus is most similar 213 
to the Amazon review corpus in that both 214 
corpora consist primarily (or exclusively) of 215 
short observations that reflect the attitudes of a 216 
wide variety of people. Because the GloVe 217 
models are trained on data that contains more 218 
attitudes and aesthetic judgements than the other 219 
training corpora, it is anticipated that it will 220 
outperform models trained on Gigaword + 221 
Wikipedia and Common Crawl. 222 

Document vectors are generated from the GloVe 223 
models by treating each review as a bag of words 224 

Table 1: GloVe Model Parameters 
 

Gigaword + Wikipedia 
2014 

Common 
Crawl 

Common 
Crawl 

Twitter 

Corpus size 6B tokens 42B tokens 840B tokens 2B tweets 

Vocabulary 
size 

400,000 1.9M 2.2M 1.2M 

Dimensions 50d, 100d, 200d, 300d 300d 300d 25d, 50d, 100d, 
200d 
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and summing together the GloVe vectors for all 225 
of the words. 226 

2.4 LSA 227 

In 1997, Landauer and Dumais introduced 228 
‘Latent Semantic Analysis’ as a “high 229 
dimensional associative model” for language 230 
learning. LSA uses the Singular Value 231 
Decomposition to reduce the dimensionality of 232 
document-term matrices and has proven a 233 
highly effective method of topic modeling. We 234 
generate two sets of LSA vectors for our study: 235 
one set consists of raw term count matrices 236 
generated using scikit-learn’s 237 
CountVectorizer() module and the other of tf-238 
idf matrices generated using the 239 
tfIdfVectorizer() module. tf-idf divides the raw 240 
term counts by the inverse of the number of 241 
documents in which the term appears, and in 242 
doing so assigns higher weights to words that 243 
appear less frequently on the assumption that 244 
they are more useful for differentiating 245 
documents from one another. 246 

3 Experiments 247 

For our dataset, we used the Amazon Fine Food 248 
Reviews dataset from Kaggle.com, which 249 
consists of about 500,000 food reviews from 250 
Amazon, spanning more than 10 years up to 251 
October 2012. From this dataset, we used the 252 
text of each review and the corresponding 253 
rating given out of five stars, training our 254 
models to predict this rating based on the text. 255 
We cleaned and lemmatized this data and 256 
created a standardized train-test split of 257 
454,763 reviews in the training set and 113,691 258 
in the test set. 259 

The dataset was cleaned by removing all 260 
punctuation, converting the string to lowercase, 261 
and lemmatizing the tokens with the 262 
Lemmatizer module from the spaCy library. 263 

To be able to compare our different 264 
embeddings effectively in our initial analysis, 265 
we standardized some variables in creating 266 
these embeddings (except for GloVe, which 267 
came pre-trained). We held our vector lengths 268 
to 50, trained for 10 epochs, and limited our 269 
vocabulary to including only words that 270 
appeared around 6000 times in the dataset, 271 
which resulted in a vocabulary of size 272 
approximately 600 (details varied slightly by 273 
model).  274 

For analyzing the performance of each of our 275 
models (except fastText, which has a built-in 276 
classifier), we trained linear regression models 277 
from scikit-learn on the training set of the 278 
embeddings and then predicted the review 279 
ratings in the test set based on their 280 
embeddings. We evaluated these review ratings 281 
by calculating their root mean squared error 282 
with respect to their actual ratings and then also 283 
by rounding each predicted review to its nearest 284 
integer between one and five (to get a valid star 285 
rating) and computing accuracy. 286 

4 Results 287 

At vector size 50 and training for 10 epochs 288 
(when applicable), we obtained the following 289 
results (Table 2). As expected, fastText 290 
performed the best when comparing both 291 
accuracy (from our predicted integer star 292 
reviews) and root mean squared error (from our 293 
raw predicted ratings), though results were 294 

Table 2: Model Metrics 

 
Model 

Label 
Frequencies 

LSA 
(Counts) 

LSA 
(tf-idf) 

Doc2Vec fastText GloVe 
(Twitter) 

GloVe 
(Gigaword) 

Accuracy 0.423 0.309 0.375 0.361 0.594 0.288 0.305 

RMSE 1.883 1.182 1.120 1.126 1.318 1.189 1.159 

Recall 0.423 0.311 0.400  0.361 --- 0.288 0.305 

Precision 0.456 0.616 0.686 0.646 --- 0.607 0.614 

F1 0.439 0.413 0.505 0.397 --- 0.309 0.281 
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otherwise somewhat comparable across the 295 
board. It is worth noting that fastText’s results 296 
cannot really be compared to the other 297 
embeddings’ since it used its own built-in 298 
logistic regression classifier, rather than the 299 
standardized scikit-learn linear regression 300 
model we used for the rest. 301 

The Label Frequencies column of Table 2 302 
represents the results obtained from randomly 303 
predicting ratings based solely on the raw 304 
distribution of ratings in the training data set, 305 
serving as a baseline against which to compare 306 
our methods. Unfortunately, we found that the 307 
random predictions had higher accuracy than 308 
any of our models, other than fastText, 309 
although their root mean squared error was also 310 
significantly higher. We tentatively attribute 311 
this to the overrepresentation of five-star 312 
reviews in the underlying dataset. 313 

5 Additional Analysis 314 

In the course of conducting our present 315 
investigation into the relative effectiveness of 316 
different word embedding techniques, a number 317 
of relevant follow-up experiments arose. These 318 
experiments are intended to develop our 319 
understanding of the different word embeddings 320 
by observing the changes that occur when 321 
certain hyper-parameters are varied, data is 322 
preprocessed differently, or when the dataset is 323 
restricted to have equal numbers of each star 324 
rating (i.e. 29769 randomly selected one-star 325 
reviews, 29769 randomly selected two-star 326 
reviews, etc.). 327 
 328 
5.1 Vector Dimension Analysis 329 
The first additional analysis we conducted was 330 
to examine the effect of varying the word and 331 
document vector dimensions for each 332 
embedding scheme while fixing the other 333 
hyperparameters like context, epochs, and 334 
learning rate. The context size and learning rates 335 
were fixed at the defaults set by the developers 336 
for the relevant embedding schemes and the 337 
number of epochs was set at 10. We then 338 
examined the change in the accuracy of the 339 
models as the vector dimension varied, from 340 
which we could determine the optimal 341 
dimension size for each embedding. We 342 
expected that increasing the dimensions would 343 
only improve the accuracy of models, but there 344 
would be diminishing returns after a certain 345 

point, when performance either plateaus or 346 
begins to decline. The rationale is that after a 347 
certain point, encoding more, extremely subtle 348 
information on word relationships should not 349 
significantly improve model performance on the 350 
sentiment prediction task. Our results are 351 
graphed in the figures below. 352 
 353 
The above charts, “Accuracy vs. Vector Size” 354 

and “Root Mean Square Error vs. Vector Size,” 355 
display the results of this further experiment. 356 
Results indicate that increasing vector 357 
dimensionality does improve model 358 
performance, though subsequent improvement 359 
becomes less substantial after at around 100 360 
dimensions. fastText and doc2vec initially 361 
showed little variation as compared with LSA, 362 
tf-idf, and GloVe, but this was likely because the 363 
minimum dimension being tested (25) captured 364 
most of the variance in those embeddings. 365 
Accordingly, we have done additional analysis 366 
on doc2vec and found that indeed it does show 367 
substantially worse performance below 25 368 
dimensions. We can reasonably expect the same 369 
to be true of fastText. 370 
 371 
5.2 Training Duration Analysis 372 
The second additional analysis we conducted is 373 
similar to the above study on the effects of 374 
dimensionality. Here, we varied the training 375 
epochs for doc2vec and fastText. Once again, 376 
the context size and learning rates were fixed at 377 
the defaults set by the developers for the relevant 378 
embedding schemes and now the word vector 379 
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dimensionality was fixed at 50. We examined 380 
the change in the accuracy of the various models 381 
as they were trained on more epochs, creating a 382 
graph of the models’ performance over the 383 
duration of training. The resulting graph is 384 
shown below. We predicted that, similar to 385 
above, there will be diminishing returns as the 386 
number of epochs increases. There is also a 387 
danger of overfitting the model to the training 388 
data, which will be particularly problematic for 389 
other tasks that would require models to be 390 
highly generalizable. 391 
The above charts, “Accuracy vs. Epoch 392 
Number” and “Root Mean Square Error vs. 393 

Epoch Number,” display the results of this 394 
further experiment, which was only applicable 395 
to doc2vec and fastText (as other models were 396 
either pre-trained or were trained as statistic 397 
models rather than learning models). Results 398 
indicate that increasing epoch size did not have 399 
a significant effect on the performance of our 400 
classifiers. This makes sense, because the 401 
imbalance in review classes (a majority of 402 
ratings were 5, and a larger majority were just 5 403 
or 1) and the relatively small size of our 404 
vocabulary (just over 600 words) mean that 405 
there are not actually many associations to be 406 
learned. Performance then is mostly dependent 407 
on how the embeddings are made, rather than 408 
how long they are trained. 409 

 410 
5.3   GloVe corpus size analysis 411 
There are two GloVe models trained on 412 
Common Crawl corpora, but one corpus 413 
contains 42 billion tokens while the other 414 
contains 840 billion. The increase in 415 
performance is negligible (< 0.01) 416 
improvements in recall, precision, and RMSE. 417 
These results indicate that 42 billion tokens is a 418 

Table 3: GloVe Metrics 
 

Common 
Crawl 42B 
(300d) 

Common Crawl 
840B (300d) 

Recall 0.357 0.358 

Precision 0.644 0.649 

RMSE 1.095 1.091 

 

Table 4: Filtered/Even Data 

Model Label 
Frequencies 

LSA 
(Counts) 

LSA (tf-
idf) 

Doc2Vec GloVe 
(Twitter) 

GloVe 
(Gigaword) 

Accuracy 0.197 0.244 0.280 0.242 0.233 0.229 

RMSE 1.885 1.277 1.202 1.295 1.292 1.295 

Recall 0.197 0.244 0.280  0.242 0.233 0.229 

Precision 0.158 0.343 0.418 0.334 0.316 0.325 

F1 0.175 0.285 0.335 0.184 0.268 0.268 
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representative sample size of the English 419 
language and increasing the size of the training 420 
corpus beyond this point does not meaningfully 421 
improve accuracy. 422 
 423 
5.4    Filtered Data 424 
In our original Results section, we were 425 
disheartened to find the random classifier 426 
outperforming us significantly on accuracy, if 427 
not RMSE. We attributed this largely to the 428 
overrepresentation of five-star reviews in the 429 
dataset, meaning that a guess of five stars would 430 
be likely to be correct, regardless of the review’s 431 
text. To account for this, we filtered the dataset 432 
down to a random selection of 29769 reviews of 433 
each star rating (i.e., 29769 randomly selected 434 
one-star reviews, 29769 randomly selected two-435 
star reviews, and so on) and reran our analyses. 436 
In Table 4, it is clear that this filtering produced 437 
more expected results from the random classifier 438 
(Label Frequencies), with an accuracy of 0.197, 439 
or almost 1/5th, the expected value at chance. 440 
While our embeddings’ accuracies also shrunk 441 
across the board, they now outperformed the 442 
random classifier in accuracy and continued to 443 
outperform it in root mean squared error to a 444 
similar degree. 445 

6    Discussion 446 

The use of a linear regression model to build 447 
predictions for each embedded review is unusual 448 
in the context of how embeddings are usually 449 
evaluated and compared (Bakarov, 2018). This 450 
method of testing would fall under Bakarov’s 451 
category of ‘Extrinsic Review,’ and more 452 
specifically, ‘Sentiment Analysis.’ In using a 453 
linear regression model, which is highly 454 
simplistic in tuning weightings for each 455 
dimension to project a vector onto a 1-D ratings 456 
space, we hoped to strip away more complicated 457 
classifiers and examine the work done by each 458 
embedding. 459 
Initial results proved somewhat surprising. Our 460 
initial hypothesis regarding the use of tf-idf 461 
versus straight counts feeding into the LSA 462 
proved correct, in that in all experiments, tf-idf 463 
outperformed the straight counts. The top 464 
performer on the initial experiment in terms of 465 
accuracy was fastText, by a wide margin (see 466 
Table 2, initial results). However, its RMSE was 467 
significantly higher than the Counts and tf-idf 468 
versions of LSA. The frequency-based random 469 

predictor exhibited similar behavior, whereby its 470 
accuracy was much surprisingly much higher 471 
than any of the trained models, but its RMSE 472 
was quite large. This suggests that fastText 473 
learned that 5-stars was by far the most popular 474 
rating, rather than encoding the meaning in each 475 
document. 476 
The first two follow-up experiments, 477 
dimensional analysis and epoch number, 478 
confirm that classification accuracies for these 479 
embeddings can be increased via careful 480 
hyperparameter tuning. It also implies that such 481 
linear models will not necessarily be improved 482 
by increasing overhead so as to include more 483 
information during learning. In other words, 484 
there is a sweet spot for each training scenario 485 
that allows each model to be optimally accurate 486 
while remaining relatively inexpensive to train. 487 
It also indicates that semantic information is not 488 
uniformly distributed in a text; i.e. our models 489 
can be selective with what aspects of the training 490 
data are assigned high significance and actually 491 
perform better, and not worse, than if they had 492 
considered more information. Optimal 493 
performance for a low price is one of the benefits 494 
of using linear models, and we are pleased with 495 
the results of these two additional experiments. 496 
In the fourth follow-up experiment, we 497 
controlled for the disproportionate number of 498 
fives in the dataset by using the same number of 499 
reviews from each of the five classes. This 500 
normalization negatively affected the prediction 501 
accuracy of the linear regression model. From 502 
this we can conclude that our models were 503 
achieving high accuracy just by guessing five 504 
most of the time, exploiting the preponderance 505 
of fivess in the data. Once the proportions of 506 
ratings in the data was controlled for by 507 
including even amounts of each rating, the 508 
random predictor accuracy dropped to chance. 509 
The tf-idf encoding proved most successful in 510 
this context, outperforming GloVe and doc2vec. 511 
This result can possibly be attributed to the clean 512 
simplicity of term-document matrices. The bag-513 
of-words approach allows for the selective 514 
weighting of keywords that captures the most 515 
salient information about the sentiment of each 516 
review. 517 
Despite being trained on gigantic corpora, the 518 
GloVe models performed worse than the LSA 519 
models, but the raw count LSA model only 520 
barely outperformed Twitter GloVe (especially 521 
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at d = 100) so perhaps if we generated document 522 
embeddings using (means or some other method 523 
besides addition), the roles would be reversed. 524 

7     Conclusion 525 

In conclusion, fastText’s built-in classifier 526 
proved more accurate than the other vector space 527 
models with the linear classifier, although its 528 
root mean square error was larger than other 529 
models, like the Counts and tf-idf 530 
implementations of LSA.  Accuracy increases as 531 
the dimensionality of the vectors increases, but 532 
it does not increase linearly, leveling off toward 533 
300 dimensions. For fastText and doc2vec, the 534 
number of training epochs has minimal bearing 535 
on each model’s performance. Ultimately, we 536 
gained a variety of helpful insights into tuning 537 
the hyperparameters of vector space models like 538 
dimensionality and training epochs in order to 539 
optimize their performance on classification 540 
tasks.  541 
For the controlled ratings frequency experiment 542 
(Table  4), the top accuracies of our models, 543 
while decisively above chance, were still not 544 
high, peaking at around 28% accuracy, and 545 
missing the correct rating by 1.2 stars on average 546 
at best. While this poor performance could be 547 
due to the highly limited vocabulary size 548 
(necessary for model implementation due to lack 549 
of GPU’s available to run our code), this result 550 
likely shows that review information was not 551 
approximated well by a linear model. Future 552 
work would employ feed-forward neural 553 
networks with non-linear transfer functions as a 554 
classifier in order to evaluate the role non-555 
linearities in these vector space models play in 556 
the encoding of sentiment in document 557 
embeddings. 558 
 559 
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