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Figure 1: Fabricated data showing improvement in temporal precision after training with our EMS prototype. Spikes indicate
note onsets.

ABSTRACT
Various supporting tools have been used to provide a scaffold during
motor learning and music learning, e.g., a metronome for timekeep-
ing during practice. Electrical muscle stimulation (EMS), where
muscles are actuated via non-invasive skin electrodes, helps with
motor learning across domains; however, EMS has not been system-
atically explored for rhythm learning. Motivated by neuroscientific
theories of motor learning, this work presents a prototype of a
novel interface that aims to hasten the user’s learning of rhyth-
mic patterns using EMS. To evaluate how proprioceptive, tactile,
or auditory training display modalities enhance user learning (as
indexed by temporal precision), we will test subjects under three
conditions: (1) actuating-EMS to support tapping to the rhythm,
(2) tactile-EMS, where the rhythm plays through low-level stimula-
tion, and (3) no-EMS (audio only). We additionally introduce a new
method for evaluating rhythm difficulty so as to examine effects
between difficulty and display modality. In the future, we will fur-
ther develop our neuroscientific theory-based design approach to
investigate user performance-sensitive training modes.
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1 INTRODUCTION
Mastering a musical instrument requires years of technical prac-
tice. Development of good technique, sight-reading abilities, and
knowledge of music theory are required to improvise, learn, and
compose new pieces. Improvement via repetitive practice is enabled
sensorimotor learning, whereby motor behavior is adjusted based
on sensation to optimize an outcome, i.e., playing a target musical
sequence. A practiced pianist has acquired predictions about the au-
ditory consequences of the movements of their fingers. Specifically,
to learn mechanisms of predictive control (such as a movement
sequence), a forward model of a planned movement is thought to be
computed by the brain. The predicted sensory consequences of the
movement are compared to sensory information to evaluate move-
ment success and corrective changes, as in error-based learning
[22]. If a wrong note is played, the ensuing dissonant chord does
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not match the expected harmonious chord. They may then register
a wrong note and fix it. Learning predictive control schemes is then
key to executing a sequence of movements precisely in time, such as
playing a rhythm. Recent innovation in technologies that interface
directly with the body affords HCI researchers the novel ability to
directly shape sensory feedback [10]. This enables the tuning of
the forward model so as to shape the motor learning process of
musical practice.

Electrical muscle stimulation (EMS) is one such body-interface
technology. First developed as a rehabilitation treatment, EMS sys-
tems electrically stimulate muscles via non-invasive skin electrodes
causing involuntary contraction. The ensuing change in muscle
length is sensed by the brain via proprioception whereby stretch
signals from muscle spindles form a percept of limb location. In-
deed, early adaptation of EMS into HCI relied on the concept of
proprioceptive interaction [11]. As proprioception is the sense of
the body position in space, this modality lends itself to spatial dis-
play. Motor learning applications of EMS in HCI have therefore
been mostly proprioceptive displays with the aim of demonstrating
to the subject the correct sequence of postures or movements in
space [3, 5, 18], or muscles to activate [14]. While spatial control
of the hand with EMS has seen recent improvements [[15], [17],
[9]], use of EMS for temporal learning has been limited. EMS can
actuate the body with millisecond-level precision, augmenting the
temporal precision of normal motor control. Such reliable tempo-
ral control could augment rhythm learning. Learning the precise
timing used in rhythm production and replication is an essential
aspect of learning music.

Whether proprioceptive feedback generated from EMS-triggered
actuation can speed up rhythm learning remains unexplored. We
therefore propose to test EMS-enabled proprioceptive display for
rhythm learning via a study design inspired by Kasahara et al., 2021,
who use a pre- during- post- approach with three experimental
conditions [8]. Here, we implement a series of rhythm production
tasks across three experimental conditions for rhythm display -
actuating-EMS: the subject is stimulated to tap along to the rhythm,
tactile-EMS: the subject is lightly stimulated (but not actuated)
along to the rhythm, and no-EMS (only audio). For each condition,
we evaluate the increase in temporal precision as indexed by the
earth mover’s distance between the subject-produced rhythm and
the ground truth rhythm. Improvements for each condition will
yield insight as to the potential for proprioceptive display via EMS
for enhanced rhythm learning.

2 RELATEDWORK
Holland et al., 2010 detailed a vibro-tactile rhythm display system
that aided users in playing polyphonic rhythms on a drum kit,
dubbed, the ’Haptic Drum Kit’ [6]. They conducted a user study
to determine which display modality would appeal most to users
and found that users preferred audio and haptic display together
over audio or haptic display alone. Similarly to the EMS system
presented here, the Haptic DrumKit was designed to induce entrain-
ment to a set of rhythms, where the vibro-tactile stimulation was a
rhythm display rather than a cue for user response. We build on the
Haptic Drum Kit in that our systemmakes use of the proprioceptive
modality via EMS. Furthermore, we index rhythm difficulty and

Figure 2: We use an EMS toolkit to implement a rhythm
training apparatus [16]. The subject trains with the EMS-
triggered proprioceptive display. Performance before and
after training is measured using the capacitive sensor.

its effects on improvement by display modality and quantitatively
examine performance relative to ground-truth rhythms.

Goto et al., 2020 introduce a system of pneumatic actuators for
proprioceptive display that train a user to improve two-handed
rhythm performance [4]. They tested subject performance after
training on ’easy’, ’medium’ and ’hard’ rhythms, comparing be-
tween improvements due to training with audio versus proprio-
ceptive display. They found performance improved more with the
actuators than with audio training. Our study builds on this work
in that instead of mechanical actuators which indirectly stretch the
muscle due to imposed limb movement, we use EMS, where the
muscle is stimulated to contract. These factors may further enhance
the proprioceptive display in that with EMS, the subject often can-
not tell whether they moved their hand or EMS did. EMS may then
augment a subject’s timing while respecting their sense of agency
[7]. This can help with motor learning itself: EMS actuation of the
subject’s limb close in time to self-generated motor commands re-
sults in more improvement than actuation well before the motor
command [8]. This suggests EMS provides a better proprioceptive
display for motor learning than imposed proprioceptive displays
such as mechanical actuators, although this has yet to be proven
outright.

Ebisu et al., 2016 describe a pertinent EMS rhythm display system,
’Stimulated Percussions,’ which writes rhythms to the body as in
our implementation [2]. They tasked users to play a 3:4 polyrhythm
before and during EMS and showed EMS actuates users more accu-
rately in time than baseline. We build on Stimulated Percussions
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Figure 3: Rhythm stimuli are presented (left) and indexed for
complexity by combining metrical hierarchy cross entropy
and interonset interval entropy [12, 19] (right).

in that our study examines post-EMS-training performance to sup-
port conclusions on motor learning (rather than only during-EMS
training) and we compare effects in audio and tactile modalities.

3 MATERIALS AND METHODS
The proprioceptive rhythmdisplay systemwas ed using the Let Your
Body Move Toolkit [16]. The toolkit consists of an Arduino micro-
controller that modulates the voltage of an off-the-shelf functional
electric stimulation system (SANITAS) and delivers the stimulation
to skin electrodes on the ventral forearm on the subject’s dominant
side (2). To sense performed rhythms, subjects tapped a capacitive
sensor, the trace from which is converted to contact onset times.

The six rhythms we chose and the tempos at which they were
presented are represented in Figure 3. These rhythms were selected
to sample from a broad set of rhythm types and span a range of
rhythm difficulty. Rhythms are represented as binary strings where
a 1 indicates a note onset and a 0 indicates no onset. We use the
‘Hierarchical Position Model’ to characterize rhythm commonality
which measures the modified cross-entropy of a rhythm sequence
by calculating the probability of each note onset based on its rhyth-
mic context (hierarchical position) [19]. This model out-performed
other models in predicting the rhythms from Western folk and
classical melodies. The model yields an estimate of rhythm string
probability by multiplying the probabilities of each onset or lack
thereof, conditioned on rhythmic context. Temperley’s index is
defined as follows:

− log(𝑝 (𝑆))/𝑁 = − 1
𝑁

𝑛=𝑁−1∑︁
𝑛=0

log(𝑝 (𝑆𝑛 |𝑐𝑛))

where 𝑆𝑛 is the binary digit at position 𝑛,𝑁 is string length, 𝑐𝑛 indi-
cates the context of the note at 𝑛 (corpus-measured prior according
to ’anchoredness’ of the note relative to higher metrical positions -
see [19]) from 0 to N in the measure.

One weakness of this index is that it does not consider sequence
repetitiveness. Hence, the sequence 𝑆 = 0101010101010101 has a
high entropy score (low probability) as the onsets fall at unusual
locations, even though 𝑆 has only one interval to be learned. To
correct this, we multiply a string’s modified cross-entropy with its
interonset interval entropy, which is the entropy of the distribution

of onsets in a rhythm string [13]. Thus this newmetric incorporates
the commonality of a rhythm string and the diversity of its intervals.

To evaluate the temporal precision of participant performance,
wemeasure the ’EarthMover’s Distance’ (EMD) between performed
onset times and ground truth rhythm onset times. The EMD, also
known as the Wasserstein distance, measures the distance between
two distributions by computing the ’energy’ to transform one distri-
bution into the other, where a moving cost is calculated depending
on mass and distance moved. This measure was found to better
predict rhythm similarity than other rhythm distances [21].

Each subject undergoes the three different experimental condi-
tions: actuating-EMS, tactile-EMS, and no-EMS (audio only). Con-
dition order is counter-balanced across the three testing days to
counter training effects. Rhythms are presented in repeated phases
with a metronome sounding at the first beat of every measure: first,
rhythm audio looped for six repeats while the participant taps along.
Then the participant taps the rhythm against the metronome alone
in a testing phase for four repeats. The third phase is experimental,
where according to condition, the participant is actuated along to
the rhythm, or a electro-tactile display pulses the rhythm, or the
audio plays the rhythm as before, for six repeats. Then, a second
testing phase, where the subject again taps the rhythm against the
metronome alone. Temporal precision is the earth mover’s distance
between ground truth pattern and performance. Improvement is
the difference in temporal precision between the first testing phase
(after first audio only training phase) and final testing phase (after
experimental training phase).

4 CONCLUSION AND FUTUREWORK
This paper describes a new rhythm learning EMS interface and
methods for calculating rhythm similarity and difficulty. The first
step beyond prototype completion is testing to show the utility of
the proprioceptive modality above tactile or audio alone in rhythm
display for training. Once tested, this prototype and rhythm evalu-
ation framework together enable new avenues of investigation for
more user-sensitive and performance-sensitive training interfaces.
Furthermore, this interface is the outcome of a key approach to
designing intelligent music interfaces that plan to further explore:
the use of neuroscientific theory as a starting point for interface
design. In this case, we began by considering forward models of
motor learning and aimed to shape sensory feedback by targeting
proprioception.

As a second example, the ’minimal intervention’ theory of motor
control postulates that the motor system only acts to adjust move-
ment patterns when deviations occur in task-relevant dimensions
[20]. In an inspired approach, we plan investigate ’corrective-EMS’:
instead of actuating the whole rhythm during training on a loop,
EMS will only actuate the user on the following repeat at the loca-
tions in the rhythm where the user made an error. Baseline propri-
oceptive display may be overbearing, taking control from the user,
who then plays no active role in learning and becomes distracted.
With corrective-EMS, users stay active during training but still gain
detailed feedback: where in the sequence they failed and how they
should have tapped.

A third example is inspired by two theories of motor learning:
use-dependent learning and error-based learning [1]. Whereas in
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the former, movements are adjusted to be closer to the previous
movement (showing the value of repeated practice), the latter re-
quires the brain to model motor error and act to cancel it. Applying
error-based learning to rhythm learning with EMS, rather than
use-dependent learning, yields ’adversarial-EMS’, where the EMS
stimulates the finger’s extensor in time with the rhythm while the
user must hold their fingers steady and therefore must learn to
counter the EMS in time with the rhythm. Improvement effects
from this adversarial approach could be compared to those from
traditional use-dependent learning methods.
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